LETTERS TO THE EDITOR

Hexacoordinated Phosphorus Derivatives in the Reaction of Alkylenechlorophosphites with Hydroxylated Bisazomethines

L. K. Kibardina, S. A. Terent'eva, A. R. Burilov, and M. A. Pudovik

Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, ul. Akademika Arbuzova 8, Kazan, Tatarstan, 420088 Russia e-mail: pudovik@jopc.ru

Received January 31, 2012

DOI: 10.1134/S1070363212070225

We found previously that the reaction of equimolar amounts of hydroxylated bisazomethines with alkylenechlorophosphites in the absence of a base leads to the formation of the hexacoordinated phosphorus derivatives [1, 2]. In addition, the studied reactions were characterized by the high stereoselectivity, which allows obtaining P(VI)-derivatives in an optically pure form, with the phosphorus atom as a stereogenic center [3]. In order to study the limits of applicability of this reaction we involved diimine I derived from the 2-hydroxy-5chloroacetophenone and diaminoethane in the reaction with the hydroxylated alkylenechlorophosphites.

$$\begin{array}{c} Me \\ Cl \\ C=O \\ OH \end{array} + H_2N(CH_2)_2NH_2 \xrightarrow{-2H_2O} Cl \\ OH \qquad HO \\ I \qquad HO$$

The reaction of equimolar amounts of diimine **I** with ethylenechlorophosphite **IIa** in a methylene chloride solution in the absence of a base leads to the formation of polycyclic derivative of the hexacoordinated phosphorus atom of the salt structure **IIIa**. Its structure

is formed with the participation of the P–O, P–C bonds and N–P transannular bond. The ³¹P NMR spectrum of the reaction mixture contains two signals of different intensity (–106.63, –107.49 ppm), which indicates the formation of the product as a diastereomeric mixture.

$$\mathbf{I} + \mathbf{R} = \mathbf{O} = \mathbf{I} + \mathbf{I} + \mathbf{O} = \mathbf{I} + \mathbf{I} +$$

R = H (IIa, IIIa, IVa), Me (IIb, IIIb, IVv).

A similar result was obtained when butylenechlorophosphite **IIb** was used as a phosphorylating agent. In this case, the ^{31}P NMR spectrum also contains two singlet signals (δ_P –109.11, –109.65 ppm). We failed to obtain a high-quality proton spectra due to a very poor solubility of the reaction products in organic solvents. The salt products **IIIa** and **IIIb** undergo dehydrochlorination at the treating with triethylamine to give phosphorates **IVa** and **IVb** of a neutral structure. They were recrystallized to yield the diastereomerically homogeneous products.

N,*N*'-Bis[1-(2-hydroxy-5-chlorophenyl)ethylidene]-ethylenediamine (I). A mixture of 5.0 g of 5-chloro-2-hydroxyacetophenone and 0.9 g of ethylenediamine in 30 ml of ethanol was heated at reflux for 2 h. After cooling the precipitated crystals were separated and washed with diethyl ether. Yield 5.1 g (95 %), mp 254–255°C. IR spectrum, v, cm⁻¹: 1614 (C=N). Found, %: C 59.63; H 4.83; Cl 19.71; N 7.66. C₁₈H₁₈Cl₂N₂O₂. Calculated, %: C 59.17; H 4.93; Cl 19.45; N 7.67.

1,1-Ethylenedioxy-3,4,11,12-dibenzo-5,10-dimethyl-6-aza-9-ammonium-2,13-dioxa-1-phospha-[8.3.0^{1,10}]tridecatri-3,5,11-ene chloride (IIIa). A mixture of 0.5 g of diimine I and 0.17 g of ethylene-chlorophosphite IIa in 10 ml of methylene chloride was stirred for 2 h at 25°C. The crystalline product was separated, washed with diethyl ether, and dried in air. Yield 0.6 g (89%), mp 209–211°C. IR spectrum, v, cm⁻¹: 1605 (C=N), 2368–2705 (NH₂⁺). ³¹P NMR spectrum (d_6 -DMSO), δ_P , ppm: -106.63, -107.49. Mass spectrum (MALDI-TOF), m/z: 455 [M^+ – HCl]. Found, %:C 48.62; H 4.37; N 5.59; P 5.94. C₂₀H₂₂Cl₃N₂O₄P. Calculated, %: C 48.83; H 4.48; N 5.69; P 6.30.

1,1-(2,3-Butylene)-3,4,11,12-dibenzo-5,10-dimethyl-6-aza-9-ammonium-2,13-dioxa-1-phospha[**8.3.0**^{1,10}]**-tridecatri-3,5,11-ene chloride (IIIb)** was prepared similarly from 0.5 g of diimine **I** and 0.40 g of butyl-enechlorophosphite **IIb**. Yield 0.8 g (57%), mp 220–223°C. IR pectrum, v, cm⁻¹: 1605 (C=N), 2368–2705 (NH₂⁺). ³¹P NMR spectrum (d_6 -DMSO), δ_P , ppm: -109.11, -109.65. Found, %: Cl 20.78; N 5.58; P 5.95. C₂₀H₂₆Cl₃N₂O₄P. Calculated, %: Cl 20.70; N 5.38; P 5.96.

 $1,1-Ethylenedioxy-3,4,11,12-dibenzo-5,10-dimethyl-6,9-diaza-2,13-dioxa-1-phospha[8.3.0^{1,10}]tri-$

decatri-3,5,11-ene (IVa). A mixture of 0.50 g of salt IIIa and 0.10 g of triethylamine in 15 ml of methylene chloride was boiled for 2 h. After 1 day, triethylamine hydrochloride was separated, methylene chloride was removed, and the residue was treated with diethyl ether. Yield 0.3 g (65 %), mp 192–195°C. IR spectrum

(KBr), v, cm⁻¹: 1606 (C=N), 3343 (NH). ¹H NMR spectrum (CDCl₃), δ, ppm (J, Hz): 1.41 d (3H, CH₃CP $^3J_{\rm HP}$ 18.72), 2.69 s (3H, CH₃C=N), 3.29–4.47 m (8H, CH₂N, CH₂O), 6.78–7.54 m (6H, Ph). ³¹P NMR spectrum (CDCl₃): δ_P –95.73 ppm. Mass spectrum (MALDI-TOF), m/z: 455. Found, %: N 6.07; P 6.51. C₂₀H₂₁Cl₂N₂O₄P. Calculated, %: N 6.15; P 6.81.

1,1-(2,3-Butylenedioxy)-3,4,11,12-dibenzo-5,10-dimethyl-6,9-diaza-2,13-dioxa-1-phospha[8.3.0^{1,10}]-tridecatri-3,5,11-ene (IVb) was prepared similarly from 0.8 g of the salt IIIb and 0.16 g of triethylamine in 15 ml of methylene chloride. Yield 0.45 g (61%), mp 180–182°C. ³¹P NMR spectrum (CDCl₃): δ_P –98.53 ppm. Found, %: N 5.77; P 6.43. $C_{22}H_{25}Cl_2$ · N₂O₄P. Calculated, %: N 5.80; P 6.41.

The IR spectra were recorded on a Bruker Vector-22 spectrometer in the range of 400–3600 cm⁻¹ from mulls in mineral oil. The ¹H NMR spectra were registered on an Avance 600 instrument operating at 600.13 MHz with the residual proton signals of solvent (CDCl₃) serving as reference. The ³¹P NMR spectra were taken on a Bruker MSL-400 Fourier-spectrometer (100.62 MHz).

ACKNOWLEDGMENTS

This work was financially supported by the Russian Foundation for Basic Research (grant no. 12-03-00204).

REFERENCES

- 1. Kibardina, L.K., Terent'eva, S.A., Kataeva, O.N., Burilov, A.R., and Pudovik, M.A., *Zh. Obshch. Khim.*, 2010, vol. 80, no. 2, p. 341.
- 2. Bagautdinova, R.Kh., Kibardina, L.K., Burilov, A.R., and Pudovik, M.A., *Zh. Obshch. Khim.*, 2010, vol. 80, no. 2, p. 339.
- 3. Pudovik, M.A., Kibardina, L.K., Terent'eva, S.A., Burilov, A.R., Kataeva, O.N., Chmutova, G.A., Al'fonsov, V.A., Latypov, Sh.K., and Sinyashin, O.G., *Mendeleev Commun.*, 2010, no. 4, p. 226.